β OpenReview β NeurIPS Homepage β Chat
TL;DR#
Reinforcement learning (RL) algorithms typically require prior knowledge about the environment, such as the state space size, which often needs extensive hyperparameter tuning. This paper addresses this limitation by introducing the concept of parameter-free RL, where algorithms require minimal or no hyperparameters. A key challenge in real-world RL applications is that these parameters are usually unknown beforehand, making the algorithm design and analysis very difficult.
This paper introduces the state-free RL setting, where algorithms do not have access to the state information before interacting with the environment. The authors propose a novel black-box reduction framework (SFRL) that transforms any existing RL algorithm into a state-free algorithm. Importantly, the regret of the algorithm is completely independent of the state space and only depends on the reachable states. The SFRL framework offers a significant advancement towards designing parameter-free RL algorithms.
Key Takeaways#
Why does it matter?#
This paper is crucial because it tackles the significant challenge of hyperparameter tuning in reinforcement learning (RL), a major obstacle hindering broader RL applicability. By introducing the concept of parameter-free RL and proposing a state-free algorithm, this work opens up new avenues for developing more robust and efficient RL algorithms that require minimal human intervention and prior knowledge. This is particularly relevant given the increasing interest in applying RL to complex real-world problems.
Visual Insights#
This figure illustrates the transformation from the original state space S to the pruned state space S+. In the original state space S, grey nodes represent states included in S+, and red nodes represent states not included in S+. The pruned state space S+ consists of states in S+ and additional auxiliary states (blue nodes) which represent groups of states not in S+. The figure shows how trajectories in the original state space S are mapped to equivalent trajectories in S+. This transformation is key to the state-free reinforcement learning algorithm proposed in the paper.