🏢 Helmholtz Munich
GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics
·3289 words·16 mins·
loading
·
loading
Machine Learning
Deep Learning
🏢 Helmholtz Munich
GENOT: a flexible neural optimal transport framework for single-cell genomics, enabling stochastic map learning with any cost function, handling unbalanced data, and tackling complex (Fused) Gromov-Wa…